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SUMMARY 

Previous papersI2 have drawn attention to the sustained oscillations ('noise') in the solution by 
successive over-relaxation of the equations from the finite difference approximation of regional 
groundwater flow including ephemeral streams. This paper shows that the trouble can be avoided by 
introducing an averaging step in the algorithm; the trouble can also be avoided by 'under-relaxation' 
but this is far less efficient than averaging. 
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INTRODUCTION 

Connorton and Hanson' and Rushton and Tomlinson' have drawn attention to computa- 
tional difficulties encountered when incorporating an ephemeral stream system into a 
numerical model of regional groundwater flow. The conventional partial differential equation 
used by these authors as the basis for the mathematical model of the groundwater flow is as 
given by Bear:3 

where x, y are horizontal Cartesian co-ordinates. 
hA = h,(x, y, t )  is the average piezometric head 
T,, T, = Tx(x, y) ,  Ty(x, y)  are the transmissivities in the x and y directions respec- 
tively. 
S = S(x, y)  is the storativity 
q = q(x, y, hA, t )  is the sink or source term. 

Included within the term q is not only pumpage and natural or artificial recharge but also 
ephemeral stream leakage. It is the latter which makes this term dependent on the 
piezometric head h, and hence dependent on the solution. 

The boundary conditions are such that at every point on the boundary of the region we 
have either a Dirichlet boundary condition with given value of h, or a no-flow Neumann 
condition. 
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Figure 1 .  Graphical representation of stream leakage 

Equation (1) is solved numerically by Connorton and Hanson' and Rushton and Tomlin- 
son2 using finite differences and successive over-rela~ation.~ Clearly the iteration necessary 
because of the ephemeral streams could also be combined with solving the simultaneous 
equations directly. In both the first two references'32 the stream leakage is of the form 

4 s  = Ks(% y hA) (2) 
where &(x, y )  is the stream leakage parameter and f(AhA) is some function of AhA= 
hA(xs, y,, t ) -  H,(x,, y,) where (xs, y,) is a point on the stream system and H, is some fixed 
datum associated with the stream, usually the stream bed level. 

The particular case investigated here is when f(Ah,) is a linear function such that 

Equations ( 3 )  imply that the stream has no storage capacity; when hA<Hs the stream 
dries up and no leakage from the stream into the aquifer can take place, see Figure 1. 

In the Connortion and Hanson paper' the computational difficulties took the form of 
sustained oscillations ('noise') such that the iteration never converged, as shown in Figure 2, 
which shows the head h, and qs at a specific stream node on the finite difference mesh at 
successive iterations. 

The analysis of the trouble depends on the exact algorithm used. This paper analyses an 
algorithm for the solution of the problem with leakage from an ephemeral stream as given by 
equation (3)  which can produce the sustained oscillation and shows that the trouble can be 
avoided by the addition of one extra step in the algorithm. 
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Figure 2. Sustained oscillation at a stream node 
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The key non-dimensional parameter is 

K, Axb B=.----- 
4T 

where T is the local average transmissivity, Ax is the finite difference mesh size (Ax = Ay for 
simplicity here) and b is the local average width of the stream. Experience has shown that 
the larger the value of B the greater is the likelihood of noise oscillation troubles with the 
original algorithm. For typical regional flow problems the areal dimensions of the aquifer 
may be such that it is not possible to reduce B by reducing the mesh size Ax and we must 
necessarily have Ax large compared with the width of the stream b. For the Lambourn 
aquifer, for example,' B can have values up to lo4. 

THE NUMERICAL SOLUTION 

We consider the steady state equation without sources or sinks since this is sufficient to 
illustrate the oscillation troubles and the remedy: 

( T 2 )  + $ (T%) = [K,( hA - H,)] (4) 

where the right-hand term only applies for the part of the region occupied by an ephemeral 
stream with h, sr H,. 

We put h, = hHs, supposing H, is constant for simplicity. Then, using Varga's integration 
method4 with A x = A y  (i.e. square mesh) we have for the numerical solution typical 
equations 

where 

Tz,, = T(iAx, jAy) 

k,, = h(iAx, j a y )  

4T= T*,,-++ TI-$,, +TI,,+:+ TI,:,, 

and 

We suppose b < A x  and for simplicity that the stream runs along a mesh line. The extra 
terms in square brackets in equation ( 5 )  are only present when (i Ax, j Ay) is a stream node. 
Put 

K,  Axb B =- 
4T 

Suppose the nodes are re-numbered as a one-dimensional array (1 )  and that the matrix 
from the finite difference operator corresponding to the non-bracketed terms in equation ( 5 )  
has entries qm. Then the S.O.R. algorithm as originally applied to the set of equations (5)  is 
given by 
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if hf 2 1 and E is the number of a stream node or 

otherwise 
(where w is the S.O.R. parameter and fl comes from any Dirichlet boundary data affecting 

the equation). 
The superscript k in equations (6) and (7)  denotes the number of the iteration. The 

diagonal terms are each unity. 
The initial values hp are taken below the stream bed levels i.e. h p < l ,  for all 1, and the 

iteration proceeds without the extra terms in the equations and with the values hf increasing 
until we have h!> 1 for some stream node s. Then if &!+' is the value we would get if the 
next step did not include the extra terms, this is given by 

However, what we actually compute is 

Now we know that h: = 1 + E:, E :  2 0. Suppose if+' = 1 + .2$+'. Substituting in equation (9) 
we have 

Hence 

h!+l< 1 if (w -  BE$ > .2!+l 

The S.O.R. parameter w was taken as 1.6 for the Lambourn 

(11) 
aquifer model,' and the value 

of B could be up to lo4, hence condition (11) is very likely to apply. The consequence is that 
a persistent oscillation may be set up. We can have h!-l < 1, h: > 1, h$+'< 1, etc. with extra 
terms brought in at alternate sweeps and the process will never converge. 

The cure is to insert another step in the algorithm so that we have 

(12) i k  -1 - ,(h! + &:-I) 
followed by 

if 6: 2 1 and E is a stream node, or 

h:"=(l-w)&~+w[fi-- l<m c ul,,,hk+'- I>m c a,,.h;] (14) 

otherwise. 

limit to which this iteration would converge, we have 
If L is the S.O.R. iteration matrix corresponding to the set of equations (7) and h is the 

hk+l -h = L ( h k  -6) 
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Hence, from equation (12) 

p + 1 -  i; = 1[I + L]@k - i;] (15) 
The iteration is thus still convergent, because if h is an eigenvalue of L, in the new 

iteration matrix the eigenvalues are $(1+ h )  and we known that 0<$(1 + A )  < 1. 
Now again the iteration proceeds with the values of h, increasing until we reach 

6: = 1 + 2:, 2,k20. Again suppose h:+' = 1 + 2,kt1 is the value at this stream node that would 
be given without the extra terms, then what we actually compute is 

Hence from equation (12) 

The situation now is that even if is negative the relatively large factor attached to the 
2: term is positive. There may be some small oscillation early in the procedure but it always 
eventually settles down so that fit> 1 is followed by h,k+'>1 also and the iteration 
converges to the solution of the equations with the extra terms as appropriate. 

It is apparent from equation (10) that the oscillation trouble could also be avoided by 
making w < 1, i.e. by under-relaxation, but this gives much slower convergence than the 
averaging method. We can demonstrate why this should be so by reference to the standard 
S.O.R. theory as in Reference 4. The formula for 6, the optimum value of the S.O.R. 
parameter is 

where p is the spectral radius of the corresponding Jacobi matrix. The dominant eigenvalue 
of the S.O.R. iteration matrix is then hl=Cj- l .  

The effect of averaging is to make the dominant eigenvalue 

w 
A, = $(1+ A,) = - 2 

,Gauss-Seidel 
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Figure 3. Graph of spectral radius of S.O.R. iteration matrix against o. 
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If this gives faster convergence than the Gauss-Seidel method with w = 1 then it certainly 
gives faster convergence than with w < 1 as can be seen from the graph of the spectral radius 
of the iteration matrix against w. (Figure 3 shows this graph as it applies to the numerical 
model of the Cotswold limestone aquifer referred to  in the next section). The spectral radius 
of the Gauss-Seidel iteration matrix is pz (Reference 4). Hence averaging gives faster 
convergence than under-relaxation if 

h a < W 2  (20) 
i.e. 

from equations (18) and (19). 
Inequality (21) implies p > 0.780 approximately. Since cos ( 4 5 )  = 0.8090, which is the 

estimate for cr. for Laplace on a square with 5 x 5 mesh and Dirichlet boundary condition, 
inequality (20) is certainly likely to be satisfied for a practical aquifer model as demonstrated 
in the next section. 

APPLICATION TO NUMERICAL MODEL 

The averaging procedure described above was applied to a finite difference model (based on 
equation (1)) of a Cotswold limestone aquifer (see Figure 4). The model is sub-divided into 
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Figure 4. Finite difference grid for Cotswold Limestone aquifer 
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Figure 5. Example of the oscillation in nodal head values from row 7 of the Costwold Limestone aquifer model at 
the 100 and 101 iterations 

an unconfined and a confined region. Three ephemeral streams, whose flow mechanism is of 
the leakage type defined by equation ( 3 )  above, flow over the unconfined region in the 
direction of the confined region. 

Initially, transmissivity (Tx, T,,) for the unconfined region was set to 500 m2/d and 
satisfactory results were obtained using the straightforward successive over-relaxation itera- 
tion defined above by equations (6) and (7). However, when transmissivity was reduced to 
100 m2/d thereby increasing the parameter B (equation (3a)), sustained oscillations of the 
type described by Connorton and Hanson' were obtained. This spurious behaviour is 
demonstrated in Figure 5 which shows a section along row 7 of nodal head values taken at 
the 100 and 101 iterations. The sustained oscillations occurred globally but, as might be 
expected, were most pronounced in the vicinity of the streams; the oscillations had not 
stopped after 900 iterations. 
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Node number in x-direction 
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Figure 6.  Converged solution of the nodal head values from row 7 of the Cotswold Limestone aquifer model after 
100 iterations using averaging 

Applying the averaging procedure defined by equation (12) in conjunction with an 
optimized value for w of 1.85 gave convergence to four significant figures after 100 iterations 
(see Figure 6). 

Using various values of w < 1 without averaging also gave convergent results. However, 
the rate of convergence for under-relaxation alone was found to be appreciably slower than 
that for the averaging algorithm used in conjunction with an optimized over-relaxation 
parameter, as indicated by the above theory. 
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